# --- START OF FILE face_enhancer.py --- from typing import Any, List import cv2 import threading import gfpgan import os import platform import torch # Make sure torch is imported import modules.globals import modules.processors.frame.core from modules.core import update_status from modules.face_analyser import get_one_face from modules.typing import Frame, Face from modules.utilities import ( conditional_download, is_image, is_video, ) FACE_ENHANCER = None THREAD_SEMAPHORE = threading.Semaphore() THREAD_LOCK = threading.Lock() NAME = "DLC.FACE-ENHANCER" abs_dir = os.path.dirname(os.path.abspath(__file__)) models_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models" ) def pre_check() -> bool: download_directory_path = models_dir conditional_download( download_directory_path, [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" ], ) return True def pre_start() -> bool: if not is_image(modules.globals.target_path) and not is_video( modules.globals.target_path ): update_status("Select an image or video for target path.", NAME) return False return True def get_face_enhancer() -> Any: """ Initializes and returns the GFPGAN face enhancer instance, prioritizing CUDA, then MPS (Mac), then CPU. """ global FACE_ENHANCER with THREAD_LOCK: if FACE_ENHANCER is None: model_path = os.path.join(models_dir, "GFPGANv1.4.pth") device = None try: # Priority 1: CUDA if torch.cuda.is_available(): device = torch.device("cuda") print(f"{NAME}: Using CUDA device.") # Priority 2: MPS (Mac Silicon) elif platform.system() == "Darwin" and torch.backends.mps.is_available(): device = torch.device("mps") print(f"{NAME}: Using MPS device.") # Priority 3: CPU else: device = torch.device("cpu") print(f"{NAME}: Using CPU device.") FACE_ENHANCER = gfpgan.GFPGANer( model_path=model_path, upscale=1, # upscale=1 means enhancement only, no resizing arch='clean', channel_multiplier=2, bg_upsampler=None, device=device ) print(f"{NAME}: GFPGANer initialized successfully on {device}.") except Exception as e: print(f"{NAME}: Error initializing GFPGANer: {e}") # Fallback to CPU if initialization with GPU fails for some reason if device is not None and device.type != 'cpu': print(f"{NAME}: Falling back to CPU due to error.") try: device = torch.device("cpu") FACE_ENHANCER = gfpgan.GFPGANer( model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=device ) print(f"{NAME}: GFPGANer initialized successfully on CPU after fallback.") except Exception as fallback_e: print(f"{NAME}: FATAL: Could not initialize GFPGANer even on CPU: {fallback_e}") FACE_ENHANCER = None # Ensure it's None if totally failed else: # If it failed even on the first CPU attempt or device was already CPU print(f"{NAME}: FATAL: Could not initialize GFPGANer on CPU: {e}") FACE_ENHANCER = None # Ensure it's None if totally failed # Check if enhancer is still None after attempting initialization if FACE_ENHANCER is None: raise RuntimeError(f"{NAME}: Failed to initialize GFPGANer. Check logs for errors.") return FACE_ENHANCER def enhance_face(temp_frame: Frame) -> Frame: """Enhances faces in a single frame using the global GFPGANer instance.""" # Ensure enhancer is ready enhancer = get_face_enhancer() try: with THREAD_SEMAPHORE: # The enhance method returns: _, restored_faces, restored_img _, _, restored_img = enhancer.enhance( temp_frame, has_aligned=False, # Assume faces are not pre-aligned only_center_face=False, # Enhance all detected faces paste_back=True # Paste enhanced faces back onto the original image ) # GFPGAN might return None if no face is detected or an error occurs if restored_img is None: # print(f"{NAME}: Warning: GFPGAN enhancement returned None. Returning original frame.") return temp_frame return restored_img except Exception as e: print(f"{NAME}: Error during face enhancement: {e}") # Return the original frame in case of error during enhancement return temp_frame def process_frame(source_face: Face | None, temp_frame: Frame) -> Frame: """Processes a frame: enhances face if detected.""" # We don't strictly need source_face for enhancement only # Check if any face exists to potentially save processing time, though GFPGAN also does detection. # For simplicity and ensuring enhancement is attempted if possible, we can rely on enhance_face. # target_face = get_one_face(temp_frame) # This gets only ONE face # If you want to enhance ONLY if a face is detected by your *own* analyser first: # has_face = get_one_face(temp_frame) is not None # Or use get_many_faces # if has_face: # temp_frame = enhance_face(temp_frame) # else: # Enhance regardless, let GFPGAN handle detection temp_frame = enhance_face(temp_frame) return temp_frame def process_frames( source_path: str | None, temp_frame_paths: List[str], progress: Any = None ) -> None: """Processes multiple frames from file paths.""" for temp_frame_path in temp_frame_paths: if not os.path.exists(temp_frame_path): print(f"{NAME}: Warning: Frame path not found {temp_frame_path}, skipping.") if progress: progress.update(1) continue temp_frame = cv2.imread(temp_frame_path) if temp_frame is None: print(f"{NAME}: Warning: Failed to read frame {temp_frame_path}, skipping.") if progress: progress.update(1) continue result_frame = process_frame(None, temp_frame) cv2.imwrite(temp_frame_path, result_frame) if progress: progress.update(1) def process_image(source_path: str | None, target_path: str, output_path: str) -> None: """Processes a single image file.""" target_frame = cv2.imread(target_path) if target_frame is None: print(f"{NAME}: Error: Failed to read target image {target_path}") return result_frame = process_frame(None, target_frame) cv2.imwrite(output_path, result_frame) print(f"{NAME}: Enhanced image saved to {output_path}") def process_video(source_path: str | None, temp_frame_paths: List[str]) -> None: """Processes video frames using the frame processor core.""" # source_path might be optional depending on how process_video is called modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames) # Optional: Keep process_frame_v2 if it's used elsewhere, otherwise it's redundant # def process_frame_v2(temp_frame: Frame) -> Frame: # target_face = get_one_face(temp_frame) # if target_face: # temp_frame = enhance_face(temp_frame) # return temp_frame # --- END OF FILE face_enhancer.py ---